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Experiments have shown that a large-eddy breakup device consisting of a short 
splitter plate placed in the turbulent boundary layer over a plane wall can lead to 
a reduction in drag. We investigate the idealized problem of an incident line vortex 
convected past such a device. The vorticity shed from the trailing edge of the plate 
is found to cancel the effect of the incident vortex and to reduce velocity fluctuations 
significantly in the vicinity of the wall. 

1. Introduction 
Experiments have shown that large-eddy breakup devices, LEBUs or ‘ flow 

manipulators’, consisting of short thin plates placed in the turbulent boundary layer 
above an extensive plane wall can reduce the drag per unit area on the wall. The 
geometry is illustrated in figure 1. The reduction in drag/unit area has been confirmed 
in a series of experiments performed independently by different groups of investigators 
(Hefner, Weinstein & Bushnelll979; Corke, Guezennec & Nagib 1979; Corke, Nagib 
& Guezennec 1982; Hefner, Anders & Bushnell 1983; Mumford & Savill 1984). The 
effect seems to persist far downstream of the plate, and so, if the plane wall is 
sufficiently long in the streamwise direction and the plate is thin, the total drag on 
both the wall and the plate is less than that on the wall without the plate. 
Measurements have shown that flow manipulators reduce the large-scale velocity 
fluctuations in the turbulent boundary layer. Hefner et at?. (1979) suggested that such 
a device might work by a process of ‘vortex unwinding’ in which a lage-scale 
structure convected past the short plate generates a cancelling shed vortex. In  this 
paper we investigate theoretically the effect of a plate on vortical structures in the 
flow and calculate the shed vorticity. 

We consider a model problem which can be solved analytically. A thin plate is set 
at zero incidence to a uniform stream with uniform velocity Uabove an infinite plane 
surface. The flow is perturbed by a line vortex of strength r as shown in figure 2. 
The flow is two-dimensional, incompressible and inviscid, the only effect of viscosity 
being the application of the Kutta condition at the trailing edge of the plate. This 
means that vorticity is shed from the plate owing to the passage of the line vortex. 
The strength r of the vortex is assumed to be small, so that both the line vortex and 
the shed vorticity are convected with the stream velocity U. 

Very simple arguments give an idea of the trends we can expect to see in the results. 
When the line vortex is upstream of the centreline of the plate it produces an upwaah 
on the plate (see figure 2). Then, in order to move the stagnation point to the trailing 
edge and satisfy the Kutta condition, the circulation around the plate must be 
opposite in sign to r, and vorticity shed from the trailing edge has the same sign as 
the oncoming line vortex. However, once the line vortex has passed the centreline 
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FIGURE 1. The geometry of a large-eddy breakup device consisting of a short plate in a 
turbulent wall boundary layer. 
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FIQURE 2. The idealized problem. 

of the plate, it produces a downwash, shedding vorticity of opposite sign. Finally, 
as the vortex moves away the circulation around the plate reduces and vorticity with 
the same sign as r i s  shed again. This is a somewhat simplified view because it neglects 
the influence of the previously shed vorticity, but nevertheless it does give a 
reasonable physical interpretation of the more detailed results obtained in this paper. 

The vorticity shed by the passage of a line vortex past an isolated plate is 
determined in 32. This is related to the classical problem of a sinusoidal gust 
convected past a thin aerofoil considered by many authors including Sears (1940), 
Graham (1970), Goldstein & Atassi (1976) and McKeogh & Graham (1980). Howe 
(1976) calculates the vorticity shed by the convection of a line vortex passed an 
isolated plate as a step in calculating the influence of vortex shedding on sound 
generation. He shows that the Fourier transform of the shed vorticity can be obtained 
quickly by the use of the von Karm6nSears equation (von Karman & Sears 1938). We 
obtain the same result by a different method - one that can also be used for the case 
of the plate above a plane infinite surface. We expand the vorticity distribution over 
the plate as a Glauert series. This method has been used extensively in unsteady 
aerodynamics, flutter and noise problems (see, e.g. Whitehead 1972 ; Goldstein 1976). 
Howe’s result for the Fourier transform of the shed vorticity is recovered, and the 
transform inverted numerically to determine the time history of the shed vorticity. 
It is found that as the line vortex of strength r passes close to the trailing edge of 
the plate, a large amount of vorticity, opposite in sign to r, is shed. This vorticity 
convects downstream with the line vortex and significantly reduces its effect. The 
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magnitude of the cancelling vorticity depends on how close to the plate the vortex 
passes. If the vertical height of the vortex from the plate is 5 yo of the chord length, 
shed vorticity of strength - 0.8 Tis concentrated near the line vortex and effectively 
cancels i t ;  if, however, the vortex height is 50 yo of the chord the cancelling vorticity 
is -0.4r.  The calculations show that long after the passage of the line vortex the 
circulation around the plate is again zero, and so the total shed vorticity is zero, i.e. 
equal positive and negative amounts of vorticity are shed. The vorticity with the same 
sign as r is not concentrated. Therefore, while the plate does not change the total 
vorticity, it has the effect of considerably reducing its axial concentration, while 
increasing its axial extent. Liss & Usol’tsev (1973) used an approximate method to 
investigate the vorticity shed from a highly staggered set of thin plates due to the 
passage of a vortex. They also found considerable cancellation. 

In $3  we go on to investigate the effect of a splitter plate above an infinite plane 
surface. The coefficients in the Glauert series now satisfy an infinite set of coupled 
equations. However, the higher-order coefficients decrease rapidly, and the series can 
be truncated to determine the Fourier transform of the shed vorticity. The vorticity 
is not significantly different from that shed from an isolated plate. The Fourier 
transform of the net velocity fluctuations far downstream of the plate is calculated. 
It is found that the flow manipulator significantly reduces the unsteady velocities 
near the wall for frequencies greater than U/chord length, provided the flow 
manipulator lies between the wall and incoming line vortex. For example, for a 
frequency of Ulchord length the velocity fluctuation is reduced to about 50 % of its 
amplitude without the plate; for frequencies above 4U/chord length it is reduced by 
at least 80 %. If, however, the line vortex passes between the plate and the wall little 
reduction in unsteadiness is obtained. Although the analysis is for a simplified model 
of a parallel-plate flow manipulator, it has led to a prediction that such a plate can 
significantly reduce large-scale velocity fluctuations. This agrees with experimental 
observations. As the momentum transport by the fluctuating Reynolds stress leads 
to large values of skin friction in a turbulent boundary layer, we can expect a 
reduction in fluctuating velocity to lead to a reduction in drag of the sort measured 
experimentally. 

The theory is too simplified to give detailed predictions of optimal devices. 
Nevertheless, if we assume that the dominant velocity fluctuations in the wall 
boundary layer have frequencies of order U/26* and higher, where 6* is the 
boundary-layer displacement thickness and is approximately equal to one-eighth of 
the boundary-layer height 8, we conclude that a plate of length 6 is required to 
produce a significant reduction in the velocity fluctuations. A longer plate would give 
little further reduction in these velocity fluctuations. This is consistent with 
experimental observations. The best position for the plate is found to be such that 
it lies between the wall and the oncoming vorticity. Once that constraint has been 
met a slight further improvement is obtained by having the plate as far away from 
the wall as possible. 

2. Vortex shedding from an isolated plate 
Consider a uniform flow parallel to a thin flat plate. We non-dimensionalize lengths 

so that the plate has a chord of length 2, and then choose a coordinate system such 
that the plate extends from ( - 1,O) to (1,O). A line vortex of strength r is at a height 
b above the plate as shown in figure 3. We linearize in the vortex strength r, and 
so the vortex convects with the mean flow. This will be a good approximation 
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FIGURE 3. The geometry of the isolated plate. 

provided r / b U  is small in comparison with unity. Time is non-dimensionalized on 
the time taken for the vortex to travel a distance of half a chord. Then the mean 
velocity is ( l , O ) ,  and at time t the vortex is at position (t, b). As the line vortex 
convects paat the plate vorticity is shed from the trailing edge to satisfy the Kutta 
condition. This shed vorticity is also convected with the mean velocity, and at  time 
t we will denote the vorticity per unit length at a position x in the wake by y( t -x) ,  
x >  1. 

The plate can be replaced by a distribution of vorticity f(x, t ) ,  - 1 Q x Q 1. f(x, t )  
is equal to the jump in u, the z-component of velocity, across the plate, 

(2.1) 
and is to be determined from a condition of no normal velocity into the plate and 
the Kutta condition. 

Kelvin’s circulation theorem requires that the total circulation about the plate and 
its wake should vanish. Therefore the rate of change of circulation around the plate 
must be equal and opposite to the rate of vortex shedding. Hence 

f@, t )  = - [ W ,  y, t)I;I:?, 

The Kutta condition states that there must not be a jump in pressure across the 
trailing edge of the plate: 

(2.3) [p(l, y, t)]y,Ig = 0. 

Now in this linearized problem p = -p(a+/at+u), and 

[+U, y, t)I;::? = s, 
where C is a contour surrounding the plate, as shown in figure 3. Hence the jump 
in q5 across the trailing edge is equal and opposite to the circulation around the plate, 
and the condition (2.3) reduces to 

A comparison with (2.2) therefore shows that the Kutta condition is equivalent to 
continuity of vorticity per unit length at x = 1 : 

d 1  
dt 

f(1, t )  = y(t- 1) = -- I f(x, t )  dx. 
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The complex potential due to the line vortex, the plate and its wake is 

f(x',t) y( t -z ' )  ln(z-x')dz', 

(2-7) 

il" 
w(z) = Uz-- In (z-z,)-- 

2n 

where z = x+iy and zo = t+ib. The condition of no flow into the plate gives 

v(x,O) = 0 (-1 < x < l), (2.8) 

Differentiation of (2.7) shows that this is equivalent to 

denotes a principal value. We wish to solve (2.9) forfand y ,  subject to the condition 

First we take Fourier transforms with respect to time, and introduce 3(x, w )  and 
(2.6). 

T ( w ) ,  where 

m 
f ( w )  = y( t )  eiWtdt. 

Since y( t )  and f(x, t) are real, 

f(-4 = f*(w), 3@, - w )  =.T*(x,w), 

where the asterisk denotes a complex conjugate. We therefore only need consider 
positive real w .  

The Fourier transform of the condition (2.6) gives 

and from (2.9) we obtain 

(2.10) 

(2.11) 

This integral equation for 3 has a Cauchy kernel and can be solved directly to give 
limplicitly in terms of (Carrier, Krook & Pearson 1966, p. 424). Use of (2.10) then 
leads to y. Unfortunately this method does not extend in any simple way to the plate 
above a wall, so we adopt a different approach. We expand the function 3(x, w )  as 
a Glauert series and write 

m 
f(x,w) = t (x+ l )~ ( l ,w) -~A, (w)  cot!@+ E Am sinmt9, (2.12) 

m-1 

where cos 6 = - x. The A, term has the required form for the singularity at the leading 
edge. The first term on the right-hand side ensures that the contribution from the 
Fourier series vanishes at x = 1 , 6 = x and so improves the convergence of the series. 
Integration of this form with respect to x shows that 

8x9 a) d~ =.?(I, W ) + $ ( A i ( W ) - - o ( w ) ) ,  
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and hence from the condition (2.10), 

(2.13) 

Only the first two coefficients in the Glauert series need be calculated to determine 
the shed vorticity. 

Substitution forf(x, w )  and y ( w )  into (2.11) gives 

a, eiw(Z’-l) 

dx’} (2.14) 
cos e + x‘ dz’ + Jl 

inw 1+2’ 
+ 

2( 1 - iw ) 

for w > 0. The integrals on the left-hand side can be evaluated in a straightforward 
way by replacing 2 sin m8‘ sin 6‘ by cos (m - 1) 6‘ - cos (m + 1) 6‘ and using the Glauert 
integral 

(2.15) 

a, eiw(z‘-i) 

- iw(A,-A,) 2(1-iw) {;S1 -l ( l+x’ )dd+ j ,  cos6+2‘ cos e + x/ dx’). (2.16) 

The A, can now be calculated by multiplying by cosn6 and integrating from 6 = 0 
to R.  This leads to 

A, = -2Ti-n+1Jn(w) e-wlbl 

(2.17) 

We have used J,(w) = (in/x) cosn6 e-iwcoss d6 (Abramowitz & Stegun 1964, p. 360) 
to evaluate the first term on the right-hand side. For the remaining two terms the 
orders of the 6 and x’ integrations have been exchanged. Then the Glauert integral 
(2.15) has been used to evaluate the second term in (2.17). The third term arises from 
an application of the standard integral 

cosn6 x 
d6 = [(X’Z-  l)t-x’]n (2’ > 1) 

cos e + x’ (2’2- 1)a 

(Gradshteyn & Ryzhik 1965, p. 366). 
To calculate the shed vorticity we need only evaluate A, and A,. From (2.17) 

since 

(2.18) 

,iw 

[ (x ’~ -  1):-2’]dx’ = --+$H?)(w),  
iw 

Similarly 
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and so it follows from (2.17) that 

Finally subtracting (2.18) from (2.19) gives 

From (2.13) the Fourier transform of the shed vorticity is given by 

(2.19) 

(2.20) 

(2.21) 

This agrees with the expression obtained by Howe (1976, equation (3.25)). We see 
that the shed vorticity is an even function of b, and is therefore the same whether 
the vortex passes above or below the plate. 

Inverting the Fourier transform to obtain the (x,t)-dependence of the shed 
vorticity we have y ( t - x ) ,  the vorticity per unit length in the wake at position x and 
time t ,  given by 

(cosw(t-x) Re (y"(w))+sinw(t-x) Im (y"(w))} dw, (2.22) 

where we have used the fact that y( - w )  = y*(w) .  y"(w) for w > 0 is given in (2.21). 
This integral was evaluated numerically for t = 5,  various axial positions x and three 
values of b. The results are shown in figure 4. At this time the line vortex is at position 
(5 ,b) .  We see that there is a concentration of vorticity in the wake near the axial 
position of the line vortex but opposite in sign. Since y(t - x) is the vorticity per unit 
length of the wake, integrating it with respect to x in the vicinity of the line vortex 
demonstrates the effectiveness of the vorticity cancellation. The integral 

Z,W 

y (t - Z) dx I X l W  

was evaluated numerically, where xl(t) and z2(t) are zeros of y ( t - x )  and y(t -x) /T  < 0 
for zl(t) < x < x2(t). This is the integral of the negative portions of the graphs in 
figure4,andwasfoundtobe -0.44I'forb= 1, -0.59rforb=0.5and -0.8lrfor  
b = 0.1. In  all cases the shed vorticity cancels a significant proportion of the vorticity 
in the incident line vortex, the cancellation being largest when the vortex passes closest 
to the plate. This vorticity cancellation was observed by Corke et al. (1982). Their 
flow visualisation showed that the passage of a large-scale structure induced vortex 
shedding of opposite sign from the trailing edge of a flat plate at zero incidence. 

At large positive times the calculations show that the vorticity shed from the plate 
tends to zero. From the Kutta condition we would then expect there to be no 
circulation around the plate and hence be no net vorticity in the wake, i.e. 

s," y(t-x)dx = 0 (2.23) 

for large enough values oft .  We have already calculated the negative contribution 
to this integral for x in the range zl(t) to x 2 ( t ) .  Integration from 1 to xl(t) and from 
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FIGURE 4. Plots of y ( 5 - x ) / r ,  the shed vorticity/unit length of the wake at t = 5. At this time the 
line vortex of strength f is at position (5, b ) .  (a) b = 1 ; ( b )  0.5; ( c )  0.1. 

z&) to infinity, where y(t-x)/Tis positive, leads to a term that is equal and opposite 
to two significant figures, thereby proving that at large times there is no circulation 
around the plate and confirming (2.23). This provides a useful check on the accuracy 
of the numerical integration. 

We have seen then that the passage of a line vortex of strength r p a s t  a plate leads 
to vortex shedding from the trailing edge of the plate, which tends to ‘smear out’ 
the total vorticity distribution. There is vorticity in the wake opposite in sign to r 
near the axial position of the line vortex, vorticity with the same sign being convected 
downstream well ahead of and behind the line vortex. We might expect such a 
vorticity distribution to produce less velocity fluctuations than an isolated line 
vortex. Eventually the incident vortex will interact nonlinearly with the nearby wake 
and ‘roll-up’. This will further enhance the cancellation. In $3 we investigate a plate 
above a plane infinite wall, and find that the shed vorticity can significantly reduce 
the velocity fluctuations between the wake and the wall. 
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FIQURE 5. The idealized flow-manipulator geometry. 

3. A vortex near a short plate above a plane infinite wall 
Having determined the vorticity shed from an isolated plate due to the passage 

of a line vortex, we will now go on to investigate the influence of a nearby wall. This 
is the ‘flow-manipulator’ geometry in which a short thin plate is used to break up 
the large-scale eddies in the wall boundary layer. We consider a plate, again at zero 
incidence with a chord length of 2 ,  positioned at  a height h above an infinite hard 
plane surface, y = 0. As before we consider an incident line vortex convected with 
a uniform mean flow and at a non-dimensional height b above the plate, so that at 
time t the vortex is at position ( t ,  b + h ) .  The geometry is illustrated in figure 5.  Let 
f(x, t) and y ( t  - x) again denote the vorticity per unit length for the plate and the wake : 
then, as in $2, Kelvin’s circulation theorem and the Kutta condition give 

a ri 
f (1 , t )  = y(t- 1) = -- J f(x,t)dx 

dt -l 

(cf. (2.6)). 
The complex potential w is now given by 

--&Jlm y(t-x’){ln(z-zl)-ln(z-z~))dx’, (3.2) 

where zo = t + i(b + h),  z1 = x’ + ih and the asterisk denotes a complex conjugate. The 
additional terms are due to the image of the vorticity distribution in the surface y = 0 
and are required to give a flow satisfying no normal velocity into the hard surface. 
The condition of no flow into the plate gives 

2-x’ } dx‘ 
x - t  2- t  1 1 r -r 

(X - t )z  + b2 (x - t ) 2  + ( b  + 2h)2+ S_, f(x’’ t ,  { z- (x - xt )Z + 4h2 

for - 1 < x < 1. As in $ 2 ,  we solve this integral equation for f and y by taking Fourier 
transforms with respect to time, and then substituting a Glauert series forf(x, w ) .  
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The Fourier transform of (3.3) gives 

x-xf 1 x-x’ {I, J@’, w )  {A- (x - x’)2 + 4h2 } dx’+y“(w) jlffi eiw” {z-z’-(x-x/)2+4h2} dd 

for - 1 < x < 1. We now expand f as a Glauert series 

m 

f(x,w) = t(x+l)J(l,w)-+Ao(w) cot$i9+ Z Am(@) sinm9, 
m-1 

with cosi9 = -x. The condition (3.1) reduces to  

After replacingfin (3.4) by the Glauert series, some terms can be simplified by using 
the Glauert integral 

cosmi9’ sin mi9 
d9’ = 71 - E COse~-coSe sin 8 

and by writing 

(3.6) 

(3.7) 

Em(x) is evaluated in the Appendix. This leads to 

00 

] dx’ 
x--2’ - 

2( 1 - iw) x - 2’ (x - x’)2 + 4h2 

- _ -  ir eiwx [e-wIbI-e-w(b+2h) 1 (3.8) 

for - 1 < z < 1, cos i9 = - x. We could determine An, n = 0, . . . , N -  1, approximately 
by insisting that (3.8) be satisfied at N values of x. That is the approach adopted 
by Whitehead (1972) in a similar cascade problem. But instead, because such a 
procedure decouples the coefficients for the isolated plate, we will multiply (3.8) by 
cos n9 and integrate from 6’ = 0 to A. This leads to  an infinite number of coupled linear 
equations for the coefficients A ,  : 

m 

where 
1 c m ,  n = 7~ 6 cos n9Em( - cos 0)  do. (3.10) 

Cm9 p1 was evaluated numerically using the analytical expression for Em derived in 
the Appendix. Cm, 11 is antisymmetric, which provides a useful check on the accuracy 
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of the numerical integration. In (3.9) 

s =-  iw J: cosne {I:, ] dx’ 
cos + 21 

cos e + x/ (cos e + x ~ ) 2  + 412 - 1 
[ n x(1-iw) 

- cose+x’ ] dx’} do. (3.11) 
cos e + x/ (cos e + 2 / ) 2  + 4h2 

After interchanging the order of the integrations in (3.11), the &integral can be 
evaluated to give 

iw 1 ’  s, = - { -f j,* (1 -cos8’) sin no’ d&+- (1 +x’) En@’) dz’ 
l-iw 2 I, 

1 dx’l [(x’2- l)i-x’]n 00 + e-10 j eiWZ’ [E,(x’) - 
1 (x’2- 1)t 

- - iw 1 -iw {S,+f j:l (1 +x’) E,(x’)dx’ 

[(X’S- (2’2 1)i-x’y - 1)i ] dx’}, (3.12) + e-iW J eiuZ’ [.. (xl) - 
00 

1 

wheres, = O , s l = - l , s , =  [ ( - l )n(2n2-1)+1]/2n(n2-l)forn~ 2.Theremaining 
integrals in S, were evaluated numerically. 

The only dependence on b, the height of the line vortex above the plate, is displayed 
explicitly on the right-hand side of (3.9). Therefore, instead of solving for A ,  directly, 
we will determine d,, where 

(3.13) 

The dn satisfy 

= -2i-,+lJ,(w) (n 2 0), (3.14) 

and are independent of b, being functions of w and h only. The d, decay rapidly as 
n becomes large, and so we can solve (3.14) approximately by truncating the series 
after N terms, and solving the first N equations in (3.14) for the N unknowns 
do, . . . , The Fourier transform of the shed vorticity can then be calculated from 

(3.15) 

(3.5) : 

~ ( 0 )  = f ( w )  r [e-ulbl-  e-dth+b) 1 9  

where (3.16) 

and is independent of b. y ( w )  was determined by truncating the Glauert series after 
8 and after 12 terms. The two results agreed to six significant figures, thereby 
verifying the validity of the procedure. 

Figure 6 shows plots of y ( w )  for b = 0.1 and three values of h. The Fourier transform 
of the vorticity shed from the isolated plate (given in (2.21)) is also shown for 
comparison. We see that for wh > 2 the nearby wall has very little effect on the shed 
vorticity . 
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FIGURE 6. Plots of the real part of the Fourier transform of the shed vorticity, Re (y"(w)), versus 
frequency u for b = 0.1, and h = 0.1 (O), 0.5 (V), 1.0 (A). The line is the real part of the vorticity 
shed from an isolated plate with b = 0.1. 

As the line vortex is convected past the plate, vorticity of opposite sign is shed 
from the trailing edge of the plate. Equations (3.15) and (3.16) give the Fourier 
transform of this shed vorticity. In  order to quantify the cancelling effect of the vortex 
shedding we will calculate the Fourier transform of the velocity fluctuations near the 
wall downstream of the plate. 

The fluid velocity can be determined from the complex potential given in (3.2). For 
example the Fourier transform of the x-component of the fluctuating velocity, 
C(x, y, w ) ,  is given by 

C(2, Y, w )  = ir eiwz-dh+b) [e"" + e-'"Y] 

Y-h - Y + h  } dx' 
2x (x-x')' + (y - h)' (x-x')'+ (Y + h)' 

Y - h  - Id.' (3.17) 
( ~ - x ' ) ~ +  (y- h)2 (z-z')~ + (Y + h)2 

for a height y below the path of the line vortex, so that h + b - y is positive. The first 
two terms in (3.17) describe the 2-component of the velocity fluctuations induced by 
the incident vortex and the wake, and do not decay as x tends to + 00. The last term 
describes the local effect of the circulation around the plate and decays rapidly (like 
(Z- 1)-2) as x becomes large and positive. Hence for positions a reasonable distance 
downstream of the plate the third integral is negligible and the second can be 
evaluated. For a position below both the plate and the path of the line vortex, C 
simplifies to 

(3.18) 

Without the splitter plate the velocity fluctuation produced by the passage of the 
line vortex and its image would be given by 

,ii, = lr 2 eiwX--o(h+b) [ewY + e-wY]. (3.19) 
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FIGURE 7. Plots of X = I 1 +f((o) ewb/T I versus frequency w for positive b and h = 0.1 (O), 0.5 (V), 
1.0 (A). I 1 +f(w) ewb/r  I is the ratio between the magnitude of the velocity fluctuations near the 
wall with and without the flow manipulator. 

We see then that the presence of the flow manipulator reduces the Fourier transform 
of the streamwise fluctuating velocities by a factor 

y"(o) ewe 

The Fourier transform of the fluctuating vertical velocity can be calculated in a 

1 + 7 .  

similar way, and for large z, y less than h + b and h, is given by 

(3.20) 

Again the velocity has been reduced by a factor 1 + y"(w) e w b l r  by the presence of the 
splitter plate. 

Plots of I 1 + y"(w) eUb/f I are shown in figures 7 and 8. The dependence on b,  the 
height of the incident line vortex above the plate, is particularly simple, and so we 
will investigate it analytically before discussing the graphs in detail. From (3.15) 

(3.21) 

where y^(o) is given in (3.16) and is independent of b. We see then that any positive 
value of b gives the same percentage reduction in velocity, but a negative b is far less 
effective. In  other words, for a significant cancellation of velocity fluctuations in the 
vicinity of the wall, we require the plate to lie between the position of the incident 
vortex and the wall. We can explain this quite simply. In  the Fourier-transformed 
problem the convected vortex of strength f is smeared out into a vortex sheet of 
strength r eiWx. The velocity fluctuations induced by such a vorticity distribution 
decay like e-wd, where d is the distance away from the sheet. Disturbances in the 
vicinity of the plate are therefore of order e-wlbl, and so the strength of the shed 
vorticity is also proportional to e-wlbl. At a position y below both the incident vortex 
and the plate the velocity perturbation due to the incident vorticity is proportional 
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FIGURE 8. Plots of X = 11 +.J(o) ewb/r I versus frequency o for h = 1 and b = -0.9 (*), -0.5 (O), 
-0.1 (V), b > 0 (A). 11 +y"(w) ed/r I is the ratio between the velocity fluctuations near the wall 
with and without the flow manipulator. Far leas reduction is obtained for negative values of b. 

to e--w(b+h--y) and that due to the shed vorticity is proportional to e-"lbl e-w(h-V). We 
see, then, that if b is positive these two effects are of the same order and we can have 
efficient cancellation. If, however, b is negative, the effect of incident vorticity is larger 
than that of the shed vorticity and the cancellation will be less dramatic. These 
conclusions are demonstrated in the numerical calculations. 

Figure 7 shows the variation of I 1 +y"(w) ewb/r  I with w for all positive b and three 
different values of h. This is the ratio between the magnitude of velocity fluctuations 
of frequency w near the wall with and without the splitter plate. We see that for 
w = 0.5 the velocity fluctuations are reduced by about 50 %, while for w greater than 
2 the reduction exceeds 80 %. This is in agreement with the experimental observation 
that flow manipulators reduce large-scale velocity fluctuations. We might expect this 
decrease in flow perturbation to lead to a corresponding reduction in skin friction, 
because the transport of momentum by vertical velocity fluctuations induced by 
eddies leads to a significant proportion of the skin friction in a turbulent boundary 
layer. We have seen that the flow manipulator very effectively reduces vertical 
velocity fluctuations near the wall for positive b and non-dimensional frequencies 
greater than about 2. We have non-dimensionalized time on 1/2U, where 2 is the plate 
length and U the free-stream velocity. Therefore we have efficient cancellation for 
dimensional frequencies greater than 4U/ l .  If the dominant disturbances in the wall 
boundary layer have frequencies greater than or equal to U/26*, where 6* is 
the boundary-layer displacement thickness and is approximately one-eighth of the 
boundary-layer height, we can expect them to be effectively cancelled by a plate 
whose length 1 exceeds 6. Hefner et al. (1983) found a plate whose length was 
approximately equal to the boundary-layer height gave optimal results, with shorter 
plates having little effect on the turbulent boundary and longer plates having an 
increased device drag. 

Figure 8 shows the fractional reduction in the magnitude of velocity fluctuations 
near the wall for negative b. As we expected from the analytical form, the device is 
far less effective. We therefore conclude that the splitter plate should be positioned 
so that it lies between the oncoming vortices and the wall. Figure 7 shows that h, 
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the height of the plate above the wall, has a slight effect on the reduction of velocity 
fluctuations, with larger values of h being more effective., This implies that the optimal 
position of the plate would be so that it is between the wall and the vorticity in the 
large-scale structure, but as far from the wall as possible, given that constraint. 

4. Conclusions 
We have found that the passage of a vortex over a splitter plate leads to the 

shedding of vorticity of opposite sign from the trailing edge. This can lead to a 
significant reduction in the fluctuating velocity in the vicinity of a hard wall if the 
plate is positioned between the incident vortex and the wall. 

It is a pleasure to thank Dr T. P. Hynes for his helpful comments. The work has 
been carried out with the support of Topexpress Ltd and the Procurement Executive, 
Ministry of Defence. 

Appendix 
Integrals of the form 

arise frequently in this work. We will calculate En(%) by considering D,(x), where 

E,(z)  is equal to the real part of D,(x). 
Do can be evaluated in a standard way by contour integration. With z = eie, 

dz 
Do(%) = - 

z2 + 2z(x+ 2ih) + 1 ' 

The integral is to be evaluated around the unit circle, giving 

(A 4) 
2 

Q(4 = - 9  

where z1 is the root of the quadratic equation z2 + 2z(z+ 2ih) + 1 = 0 with modulus 
less than 1. 2;' is then the other root, and 

z1 = -z-2ih+z8, where z2 = [(z+2ih)2-l]a, (A 5 )  

with the sign of the square root being chosen such that 1 z1 I < 1. Substituting for z1 
in (A 4), we find that 

Now 

1 

22 
Do@) = -. 

z2 -5- 2ih 

22 
Hence Dl(4  = 
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is true for n = 0 and 1. We will prove it for general n by induction. Suppose 
We speculate that D, = ( ~ , - ~ - 2 i h ) ~ / z , .  Equations (A 6) and (A 7) show that this 

Then 

= - (z+Zih) D,(z) ++D,+,(x) -@,-,(.), 
i.e. 

D,+,(z) = - 2(2+ 2ih) D,(z) - Dnp1(z). (A 9) 

We can use (A 8) to replace D,(z) and D,-,(z) in (A 9). After some algebra, this 
leads to 

D,+,(z) = ( ~ ~ - ~ - 2 i h ) ~ + l / z ~ ,  (A 10) 

thus completing the proof by induction. Hence 

for n 2 0, where z2 = [ ( ~ + 2 i h ) ~ -  114, the sign of the root being chosen such that 
I-z-2ih+z2I c 1. 

R E F E R E N C E S  

ABRAMOWITZ, M. & STEGUN, I. A. 1965 Handbook of Mathematical Functions. Dover. 
CARRIER, G. F., KROOK, M. & PEARSON, C. E. 1966 Functions of a Complex Variable: Theory and 

Technique. McGraw-Hill. 
CORKE, T. C., GUEZENNEC, Y. G. & NAGIB, H. M. 1979 Modification in drag of turbulent boundary 

layers resulting from manipulation of large-scale structures. In Proc. Viscous Drag Reduction 
Symp., Dallas. AIAA Prog. Astro. Aero. 72, 128-143. 

CORKE, T. C., NAGIB, H. M. & GUEZENNEC, Y. G. 1982 A new view on origin, role and manipulation 
of large scales in turbulent boundary layers. NASA CR 165861. 

GOLDSTEIN, M. E. 1976 Aeroacoustics, p. 229. McGraw-Hill. 
GOLDSTEIN, M. E. & ATASSI, H. 1976 A complete second-order theory for the unsteady flow about 

GRADSHTEYN, I. S. & RYZHIK, I. M. 1965 Tables of Integrals, Series and Products. Academic. 
GRAHAM, J. M. R. 1970 Lifting surface theory for the problem of an arbitrarily yawed sinusoidal 

gust incident on a thin aerofoil in incompressible flow. Aero. Q.  21, 182-198. 
HEFNER, J. N., WEINSTEIN, L. M. & BUSHNELL, D. M. 1979 Large-eddy break-up scheme for 

turbulent viscous drag reduction. In  Proc. Vieeous Drag Reduction Symp.,  Dallas. AIAA Prog. 
Astro. Aero. 72, 110-127. 

HEFNER, J. N., ANDERS, J. B. & BUSHNELL, D. M. 1983 Alteration of outer flow structures for 
turbulent drag reduction. AZAA-8300293. 

HOWE, M. S. 1976 Influence of vortex shedding on sound generation. J. Fluid Mech. 76,711-740. 
LISS, A. Yu. & USOL’TSEV, A. A. 1973 Influence of vortex-wing interaction on reducing vortex 

KLRMLN, T. VON & SEARS, W. R. 1938 Airfoil theory for non-uniform motion. J .  Aero. Sci. 5 ,  

MCKEOGH, P. J. & GRAHAM, J. M. R. 1980 The effect of mean loading on the fluctuating loads 

an airfoil due to a periodic gust. J. Fluid Mech. 74, 741-765. 

induction. Izv. Aviatsimnaya Tecknika 16, 5-10. 

379-390. 

induced on aerofoils by a turbulent stream. Aero. Q. 31, 56-69. 



Effect of large-eddy breakup devices on oncoming vorticity 463 

MUMFORD, J. C. & SAVILL, A. M. 1984 Parametric studies of flat plate, turbulence manipulators 
including direct drag results and laser flow visualisation. In Laminar and Turbulent Boundary 
Layers. Proc. ASME Energy Sources Technology Conference, New Orleans, 12-16 February 1984 
(eds. E. M. Uram & H. E. Weber), pp. 41-51. 

SEARS, W. R. 1940 Some aspects of non-stationary airfoil theory arid its practical application. 
J .  Aero. Sci. 8, 104-108. 

WHITEHEAD, D. S. 1972 Vibration and sound generation in a cascade of flat plates in subsonic 
flow. Aero. Ra. Counc. R & M 3685. 


